Dependence of core heating properties on heating pulse duration and intensity

TOMOYUKI JOHZAKI, HIDEO NAGATOMO, ATSUSHI SUNAHARA, ILE, Osaka University, HONGBO CAI, ILE, Osaka Univ., HITOSHI SAKAGAMI, NIFS, KUNIOKI MIMA, ILE, Osaka University — In the cone-guiding fast ignition, an imploded core is heated by the energy transport of fast electrons generated by the ultra-intense short-pulse laser at the cone inner surface. The fast core heating (\(\sim 800\)eV) has been demonstrated at integrated experiments with GEKKO-XII+ PW laser systems. As the next step, experiments using more powerful heating laser, FIREX, have been started at ILE, Osaka university. In FIREX-I (phase-I of FIREX), our goal is the demonstration of efficient core heating (\(T_i \sim 5\)keV) using a newly developed 10kJ LFEX laser. In the first integrated experiments, the LFEX laser is operated with low energy mode (\(\sim 0.5\)kJ/4ps) to validate the previous GEKKO+PW experiments. Between the two experiments, though the laser energy is similar (\(\sim 0.5\)kJ), the duration is different; \(\sim 0.5\)ps in the PW laser and \(\sim 4\)ps in the LFEX laser. In this paper, we evaluate the dependence of core heating properties on the heating pulse duration on the basis of integrated simulations with Fi3 (Fast Ignition Integrated Interconnecting) code system.

Tomoyuki Johzaki
ILE, Osaka University

Date submitted: 17 Jul 2009

Electronic form version 1.4