Simulating the NDCX-II Physics Design

W.M. SHARP, A. FRIEDMAN, D.P. GROTE, R.H. COHEN, S.M. LUND, LLNL, M. LEITNER, J.-L. VAY, W.L. WALDRON, LBNL — The Virtual National Laboratory for Heavy-Ion Fusion is developing a physics design for NDCX-II, an experiment to study warm dense matter heated by ions near the Bragg-peak energy. Present plans call for using thirty-four induction cells to accelerate 30 nC of Li\(^+\) ions to more than 3 MeV. Neutralized drift-compression is then used to compress the beam to the submillimeter radius and 1-ns duration needed to attain useful target temperatures. A 1-D particle-in-cell simulation ASP has been used for developing the NDCX-II acceleration schedule, and centroid equations have recently been added to study the effects of transverse-focusing errors. Multidimensional simulations with Warp have validated the ASP model and have been used both to design transverse focusing and to compensate for injection non-uniformities and 3-D effects. Results from this work are presented, and ongoing work to replace the analytic waveforms with output from circuit models is discussed.

Work performed under the auspices of US Department of Energy by LLNL under Contract DE-AC52-07NA27344 and by LBNL under Contract DE-AC03-76SF00098.