Operational Characteristics of Liquid Lithium Divertor in NSTX

R. KAITA, H. KUGEL, T. ABRAMS, M.G. BELL, R.E. BELL, S. GERHARDT, M.A. JAWORSKI, J. KALLMAN, B. LEBLANC, D. MANSFIELD, D. MUELLER, S. PAUL, A.L. ROQUEMORE, F. SCOTTI, C.H. SKINNER, J. TIMBERLAKE, L. ZAKHAROV, PPPL, R. MAINGI, ORNL, R. NYGREN, SNL, R. RAMAN, U. of Washington, S. SABBAGH, Columbia U., V. SOUKHANOVSKII, LLNL, AND NSTX TEAM — Lithium coatings on plasma-facing components (PFC’s) have resulted in improved plasma performance on NSTX in deuterium H-mode plasmas with neutral beam heating. Salient results included improved electron confinement and ELM suppression. In CDX-U, the use of lithium-coated PFC’s and a large-area liquid lithium limiter resulted in a six-fold increase in global energy confinement time. A Liquid Lithium Divertor (LLD) has been installed in NSTX for the 2010 run campaign. The LLD PFC consists of a thin film of lithium on a temperature-controlled substrate to keep the lithium liquefied between shots, and handle heat loads during plasmas. This capability was demonstrated when the LLD withstood a strike point on its surface during discharges with up to 4 MW of neutral beam heating.

1Supported by U.S. Department of Energy Contracts DE-AC02-09CH11466, DE-AC04-94AL85000, DE-AC52-07NA27344, and DE-AC05-00OR22725

Robert Kaita
Princeton Plasma Physics Laboratory

Date submitted: 07 Jul 2010