Triggered confinement and pedestal temperature enhancement in NSTX H-mode discharges

R. MAINGI, J. CANIK, Oak Ridge National Laboratory, R. BELL, S. GERHARDT, S. KAYE, B. LEBLANC, PPPL, T. OSBORNE, General Atomics, NSTX TEAM — We report progress in the extension of a high performance regime (“Enhanced Pedestal” or EP H-mode) in NSTX discharges, where the pedestal temperature doubles and the energy confinement increases by 50%, above and beyond the confinement enhancement from lithium wall coatings [1]. The spontaneous transition is triggered by a large edge-localized mode, either natural or externally triggered by 3-D fields; the EP H-mode itself is ELM-free. The transport barrier grows inward from the edge, with a doubling of both the pedestal pressure width and the spatial extent of steep radial electric field shear. While short EP H-mode phases were previously reported [2], an EP H-mode with duration up to three energy confinement times was recently observed. The normalized beta \( \sim 6.5 \) is amongst the highest values sustained in NSTX. Moreover the non-inductive fraction \( \sim 0.65 \) is the highest plasma current \( \sim 0.9 \) MA in NSTX. Experiments are continuing for achievement of reproducible EP H-modes.


1Supported in part by U.S. DoE Contracts DE-AC05-00OR22725 and DE-AC02-09CH11466.

Rajesh Maingi
Oak Ridge National Laboratory