Abstract Submitted for the DPP10 Meeting of The American Physical Society

Anomalous Plasma Heating at the Center of ITER due to the Two Plasmon, (Gould-Trivelpiece Modes), Turbulence¹ V. ALEXANDER STEFAN, Institute for Advanced Physics Studies, Stefan University, La Jolla, CA 92037 — The parametric excitation of two Gould-Trivelpiece modes with gyrotrons in electron cyclotron frequency^{2,3} domain is studied. The most powerful G-T modes counter propagate at the angle of 45° with respect to the toroidal magnetic field. Around 10 % of the G-T modes energy is convected ⁴away toward the plasma edge, whereby it is dissipated via Landau damping. This generates suprathermal electrons and dragged by them accelerated ions. Based on a weak parametric turbulence theory⁵ the gyrotron dissipation rate is evaluated, showing strong bulk heating at the ITER center. The energy confinement time, in terms of gyrotron intensity, scales as $I_o^{-4/3}$.

V. Alexander Stefan Institute for Advanced Physics Studies, Stefan University, La Jolla, CA 92037

Date submitted: 12 Jul 2010 Electronic form version 1.4

¹Supported in part by Nikola TESLA Labs, La Jolla, CA.

²R. Prater et. al. Nucl. Fusion 48, No 3 (March 2008).

³V. Alexander Stefan, Bulletin APS-DPP, 2009; 2008.

⁴M. N. Rosenbluth, *Phys. Rev. Letters*, **29**, 565 (1972).

⁵V. Alexander Stefan, Nonlinear Electromagnetic Radiation Plasma Interactions, (S-U-Press, 2008).