Abstract Submitted for the DPP10 Meeting of The American Physical Society

Collective Focusing of Intense Ion Beam Pulses for High Energy Density Physics Applications¹ MIKHAIL A. DORF, (LLNL), IGOR D. KAGANOVICH, EDWARD A. STARTSEV, RONALD C. DAVIDSON, (PPPL) — The collective focusing concept in which a weak magnetic lens provides strong focusing of an intense ion beam pulse carrying an equal amount of neutralizing electron background is investigated by making use of advanced particle-in-cell (PIC) simulations and reduced analytical models. The original analysis by Robertson [Phys. Rev. Lett. **48**, 149 (1982)] is extended to the parameter regimes of particular importance for several high energy density physics applications. The present paper investigates: (a) the effects of a moderately strong magnetic field, $\omega_{ce} \ge \omega_{pe}$; (b) suppression of the applied magnetic field due to the presence of the beam self-fields generated when $r_b \ge c/\omega_{pe}$; and (c) the influence of a finite-radius conducting wall around the beam cross section. Here, r_b is the beam radius, c is the speed of light, and ω_{ce} and ω_{pe} are the electron cyclotron and electron plasma frequencies, respectively.

¹Research supported by the U.S. Department of Energy.

Mikhail Dorf Lawrence Livermore National Laboratory

Date submitted: 14 Jul 2010

Electronic form version 1.4