Oscillating-Field Current-Drive Experiments on MST1 K.J. McCollam, J.K. Anderson, F. Ebrahim, D.J. Den Hartog, J.A. Reusch, J.S. Sarff, H.D. Stephens, D.R. Stone, UW-Madison, D.L. Brower, W.X. Ding, UCLA — Oscillating-field current drive (OFCD) is a proposed method of efficient, steady-state current drive in which applied AC poloidal and toroidal loop voltages interact with magnetic relaxation to produce a DC plasma current. OFCD at a moderate power level is added to Ohmically sustained reversed-field pinch plasmas in the MST device, and its effects on equilibrium profile evolution, global magnetic fluctuations, and energy balance are examined using a variety of measurements. For the optimal phase between the two applied AC voltages, the cycle-average plasma current increases by up to 10\% with Ohmic efficiency, while both the energy confinement time τ_E and normalized thermal pressure β slightly improve, consistent with a reduction in magnetic fluctuation amplitudes. Nonlinear, 3D, resistive-MHD simulations reproduce the main experimental features, especially the phase dependence of the added current. Internal fluctuation measurements are underway to examine changes in the relaxation dynamics. A new programmable power supply is to be used in optimizing OFCD performance with longer pulses, more power, and improved waveform control, including nonsinusoidal OFCD.

1This work is supported by the US DOE.