LDX and the Density Pinch1 J. KESNER, P. MICHAEL, P. WOSKOV, MIT PSFC, M. DAVIS, D. GARNIER, M. MAUEL, Columbia University — We observe in LDX a strong, turbulence driven density2 and the resulting stationary density profile. A turbulent pinch is predicted by both MHD and kinetic theory. A turbulent pinch is also observed in tokamaks3, but the effect is particularly strong in a dipole because the magnetic field falls strongly ($B \propto 1/R^3$), there is no rotational transform (and therefore no “passing” particles) and the turbulent modes are interchange-like. As a result, whereas for a tokamak the stationary density tends to fall as $\sim 1/q$ (i.e. a factor ~ 3), in LDX the peak can rise a factor of ~ 30 above the edge density. The stationary profiles are robust, as seen in experiments with a modulation of the heating power or of the edge fueling. Low frequency fluctuations are observed, both at the outer plasma edge and as core chordal measurements. Quasi-coherent fluctuations are also observed under the condition of low gas feed and in this circumstance the density can diverge from the stationary profile.

1Supported by US DOE Grants: DE-FG02-98ER54458/9.
2A. Boxer et al., Nature-Physics 6 (2010) 207.