Betatron radiation from an off-axis electron bunch in a PWFA

YI SHI, OULIANG CHANG, PATRIC MUGGLI, University of the Southern California, CHENGKUN HUANG, WEIMING AN, WARREN MORI, University of California, Los Angeles, PLASMA ACCELERATOR GROUP TEAM, UCLA PLASMA SIMULATION GROUP TEAM — In a plasma wakefield accelerator (PWFA) with a drive bunch density higher than the plasma, a pure ion column is formed behind the drive bunch (blow-out regime). Due to the ion restoring force, which is linearly increasing with radius, beam electrons perform betatron oscillations. We consider the case of a witness bunch entering the plasma with a radial offset or a transverse momentum component. In this case, the whole witness bunch oscillates about the beam axis defined by the drive bunch. We use the particle in cell code QUICKPIC [1] to simulate the plasma wakefields and we study the radiation characteristics as a function of the electron bunches and plasma parameters. We place the witness bunch at the position where the synchrotron- radiated power is compensated for by the energy gain from the wakefields. Detailed results will be presented.


1Work supported by US Department of Energy.