Investigation of Divertor Heat Flux Width in DIII-D for 2010 Joint Research Target\(^1\) C.J. LASNIER, M.A. MAKOWSKI, D.N. HILL, LLNL, J.A. BOEDO, UCSD, N.H. BROOKS, A.W. LEONARD, W.P. WEST, General Atomics, J.D. ELDER, U. Toronto, J.G. WATKINS, SNL — The 2010 Joint Research Target for NSTX, C-Mod, and DIII-D aims to improve prediction of divertor heat flux profile width for future divertors. In DIII-D we varied input power, toroidal field, plasma current \(I_p\), and density. Divertor heat flux was obtained using IR thermography. We find that \(w_{q,\text{div}}\) is most sensitive to \(I_p\). Mapped to the outer midplane \(w_q,\text{div}\) scaled like \(w_{q,\text{mid}}\) (mm) = 5.38/\(I_p^{1.24}\) (MA). Scrape-off layer and pedestal density and temperature fluctuations were measured using midplane and x-point plunging Langmuir probes at the lower powers. From midplane fluctuation data, we obtained energy transport measurements, which we compare with transport coefficients obtained from onion-skin modeling using density profiles, and with experimentally determined heat flux widths in the divertor.

\(^1\)This work performed under the auspices of the US Department of Energy under DE-AC52-07NA27344, DE-FG02-07ER54917, DE-FC02-04ER54698, and DE-AC04-94AL85000.