Abstract Submitted for the DPP10 Meeting of The American Physical Society

Variation of Turbulence and Transport with the T_e/T_i Ratio in Hmode Plasmas¹ G.R. MCKEE, Z. YAN, R.J. FONCK, I.U. UZUN-KAYMAK, U. Wisc.-Madison, T.L. RHODES, L. SCHMITZ, UCLA, C. HOLLAND, UCSD, A.E. WHITE, MIT-PSFC — Confinement and transport vary strongly with T_e/T_i . Recent experiments on DIII-D have sought to examine the physical mechanisms behind this dependence by systematically varying T_e/T_i in L- and H-mode plasmas, while T_i , rotation, density and gradient scale lengths are held roughly constant. T_e/T_i is increased by 25% (achieving $T_e/T_i \leq 1$) in non-sawtoothing, long-pulse hybrid Hmode plasmas using 3.3 MW of ECH power, reducing τ_E by 30%. The magnitude of low-k density fluctuations, measured with BES, is found to correspondingly increase by 30%-50% over the radial range 0.35 < r/a < 0.8. This turbulence behavior contrasts with that observed in L-mode experiments, in which confinement is reduced at higher T_e/T_i , but little change is observed in the magnitude of low-k density turbulence. $S(k_r, k_{\theta})$ spectra and related turbulence properties for L- and H-mode plasmas will be compared. Calculations of growth rates and predicted turbulence levels will be performed.

¹Supported by the US Department of Energy under DE-FC02-04ER54698, DE-FG02-89ER53296, DE-FG02-08ER54999, DE-FG02-08ER54984, DE-FG02-07ER54917, DE-FC02-99ER54512.

George McKee University of Wisconsin-Madison

Date submitted: 16 Jul 2010

Electronic form version 1.4