Abstract Submitted for the DPP10 Meeting of The American Physical Society

Transport Dependence on Safety Factor Profile in DIII-D Steadystate Discharges¹ C.T. HOLCOMB, LLNL, J.R. FERRON, T.C. LUCE, J.C. DEBOO, GA, A.E. WHITE, MIT-PSFC, T.L. RHODES, L. SCHMITZ, UCLA, F. TURCO, ORAU — An analysis of the transport dependence on the safety factor in steady-state scenario discharges is presented based on experimental scans of q_{95} and q_{min} at fixed β_N and B_T . Electron and ion density and temperature decrease with q_{95} . T_e and T_i increase and broaden with q_{min} . Power balance calculations show ion thermal diffusivity χ_i increases with q_{95} and somewhat with q_{min} , but χ_e decreases with q_{min} . Measured low-k density turbulence increases strongly with q_{min} and weakly with q_{95} in rough agreement with the q-dependence of χ_i but not χ_e . TGLF drift wave linear stability analysis predicts mid-radius growth rates at all k decrease with increasing q_{95} and increase with increasing q_{min} . This disagrees with the observed χ_i increase with q_{95} , is consistent with the increase in χ_i with q_{min} , and is at odds with the observed decrease in χ_e with q_{min} . Calculations of the critical gradient for low-k modes and nonlinear stability analysis with mode coupling will be presented.

¹Supported by the US DOE under DE-AC52-07NA27344, DE-FC02-04ER54698, DE-FG03-08ER54984, and DE-AC05-06OR23100.

Chris Holcomb Lawrence Livermore National Laboratory

Date submitted: 15 Jul 2010

Electronic form version 1.4