Search for Trapped Antihydrogen in ALPHA1 NIELS MADSEN, Swansea University, ALPHA COLLABORATION — Antihydrogen (\(\bar{H} \)) spectroscopy promises the most precise tests of the symmetry of matter and antimatter and can possibly offer new insights into the baryon asymmetry of the universe. \(\bar{H} \) is however produced only in small quantities. The ALPHA collaboration therefore plans to trap \(\bar{H} \) to permit the use of precision atomic physics tools for comparisons of antihydrogen and hydrogen. Trapping of \(\bar{H} \) is challenging as neutral atom traps are shallow (\(~0.6\) K for ground state atoms) compared to typical recorded \(\bar{H} \) temperatures. The \(\bar{H} \) is formed at the temperature of the \(\bar{p} \) used for the synthesis. As no atom cooling is readily available the constituent \(\bar{p} \) and positrons (\(e^+ \)) must be cold for the creation of \(\bar{H} \). We show how ALPHA has addressed this challenge and we discuss the first systematic attempt at identifying trapped \(H \) in our system. This includes special techniques for fast release of the trapped anti-atoms, as well as a silicon vertex detector to identify \(\bar{p} \) annihilations. The silicon detector is crucial to efforts to reduce the background. We further discuss the background from mirror-trapped \(\bar{p} \), and how we can differentiate these from trapped \(\bar{H} \) atoms.

1Work supported by CNPq, FINEP (Brazil), ISF (Israel), MEXT (Japan), FNU (Denmark), VR (Sweden), NSERC, NRC/TRIUMF, AIF (Canada), DOE, NSF (USA), EPSRC and the Leverhulme Trust (UK).

Niels Madsen
Swansea University

Date submitted: 16 Jul 2010

Electronic form version 1.4