Recent Measurement and Interpretation of Stable and Unstable Alfvén Eigenmodes (AEs) in the Presence of Fast Ions in Alcator C-Mod

J. SEARS, LANL, R.R. PARKER, A. BADER, T. GOLFINOPOULOS, MIT PSFC, T.P. INTRATOR, LANL, G.J. KRAMER, PPPL — Stable AEs of various toroidal mode number are excited by a wide-toroidal-spectrum antenna and detected by a fully resolved toroidal array of probes. Stable GAEs with \(n = 0 \) and damping rates around \(\gamma / \omega_0 = 1\% \), and stable TAEs with \(n = 1 \) and damping rates around \(\gamma / \omega_0 = 1.5\% \) are observed. In the same discharges, TAEs of higher toroidal mode numbers including \(n = -4 \) and \(n = 6 \) are more centrally localized and do not couple to the diagnostic until driven unstable by fast ions. Such non-linear behavior via mode-particle interaction is intrinsic to the complete picture of AE instability. A composite spectrum (\(|n| = 0 - 10 \)) is rendered from the collection of stable and unstable mode observations, and from NOVA-K calculations; peak instability is reached around \(|n| = 5 \), in rough agreement with the theoretical scaling of fast ion drive. Within this broad spectrum, however, stability between adjacent modes is not smooth - it varies strongly with mode number and plasma shape. These local islands of stability could be exploited through subtle changes in equilibrium parameters to stabilize AEs in burning plasmas.

\(^1\)Support: USDoE DE-FC02-99ER54512, DE-AC02-09CH11466.