Degenerate Mixing of Trivelpiece-Gould Waves on a Cold, Finite-Length Plasma Cylinder

M.W. ANDERSON, T.M. O’NEIL, UCSD, R.W. GOULD, CalTech — In the cold-fluid dispersion relation $\omega = \omega_p/[1 + (k_\perp/k_z)^2]^{1/2}$ for Trivelpiece-Gould waves on an infinitely-long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k_\perp/k_z. As a result, for any frequency $\omega < \omega_p$, there are infinitely many degenerate waves, all having the same ratio k_\perp/k_z. On a cold finite-length plasma cylinder, each longitudinal normal mode is a mixed superposition of these degenerate waves. Here several such modes are calculated for a single-species plasma cylinder with rounded ends. A striking feature of these modes is that the short-wavelength waves add constructively along cones $\frac{dz}{dr} = \pm (\omega_p^2/\omega^2 - 1)^{1/2}$. Thus, the mode structure of even a low order mode is substantially more complicated than the single sine wave approximation typically assumed. Also, the admixture of short wave lengths substantially enhances the viscous damping of the mode.

1Supported by NSF PHY-0903877 and DOE DE-SC0002451.