Abstract Submitted for the DPP10 Meeting of The American Physical Society

Equilibrium and Stability Properties of Pegasus Edge Plasmas¹ M.W. BONGARD, J.L. BARR, R.J. FONCK, E.T. HINSON, A.J. REDD, University of Wisconsin-Madison — ELM-like filamentary edge instabilities are observed under conditions of high j_{\parallel}/B ($\geq 1 \text{ MA/m}^2\text{T}$) in Pegasus. Their properties include: a high-m, low-n (1-5) electromagnetic signature, consistent with $m/n \simeq q_a$; characteristic frequencies < 100 kHz; high poloidal coherence; rotation; and, explosive filament detachment followed by accelerating outboard radial propagation. Presently, these modes' dependence on the peeling instability parameter j_{\parallel}/B is being systematically studied through variation of $\partial I_p/\partial t$ and I_{TF} . To date, all data indicate these instabilities lie in the peeling regime. The modest edge T_e and short pulse lengths of Pegasus afford direct diagnostic access to the edge via internal magnetic and Langmuir probe measurements. A novel edge probe utilizing a radial array of Hall-effect sensors² measures $B_z(R,t)$ with high spatial and $\sim 50 \ \mu s$ temporal resolution, and provides strong experimental constraint on $j(\psi)$ in equilibrium reconstructions on ELM-relevant timescales. Initial magnetic equilibrium reconstructions and ideal stability analysis with DCON imply instability when edge filamentation occurs.

¹Work supported by US DOE Grant DE-FG02-96ER54375. ²M.W. Bongard *et al.*, accepted for pub. in Rev. Sci. Instrum. (2010)

Michael Bongard University of Wisconsin-Madison

Date submitted: 16 Jul 2010 Electronic form version 1.4