Nonlinear Simulations of Peeling-Ballooning modes in ITER H-mode scenario

X.Q. XU, LLNL, B. DUDSON, U of York, M.V. UMANSKY, LLNL, P.B. SNYDER, GA, H. WILSON, U of York — A minimum set of equations based on the Peeling-Ballooning (P-B) model with non-ideal physics effects (toroidal flow shear, diamagnetic drift, ExB drift, resistivity, and anomalous electron viscosity) is found to produce some essential features of pedestal collapse when using the BOUT++ simulation code. It is found from nonlinear simulations for a realistic high Lundquist number that the pedestal collapses are limited to the edge region and the ELMs size is about 8-10% of of the pedestal stored energy, which is consistent with many observations of large ELMs. Nonlinear simulations demonstrate that the nonlinear P-B modes trigger magnetic reconnection, which then leads to the partial collapse of the pedestal. For one of the latest designs of the ITER 15MA inductive H-mode scenario (under the burning condition), linear growth rate, the ELM size, and power deposition pattern on ITER plasma facing components will be quantified.

1Work performed for U.S. DOE by U.C. LLNL under Contract DE-AC52-07NA27344, grants DE-FG03-95ER54309 at general Atomics, and by the UK Engineering and Physical Sciences Research Council under grant EP/H012605/1.

X.Q. Xu
LLNL

Date submitted: 02 Sep 2010