Ultraviolet photoelectron spectroscopy analysis of lithium and deuterium interactions with graphite1 C.N. TAYLOR, B. HEIM, S. ORTOLEVA, J.P. ALLAIN, Purdue University, C.H. SKINNER, PPPPL, H.W. KUGEL, A.L. ROQUEMORE, R. KAITA, PPPL, PURDUE UNIVERSITY TEAM, PRINCETON PLASMA PHYSICS LABORATORY COLLABORATION — Lithium wall conditioning has been implemented in fusion devices such as TFTR, CDX-U, FTU, T-11M, TJ-II and NSTX and has yielded improved plasma performance. Offline experiments at Purdue University have investigated the mechanism by which Li interacts with D. X-ray photoelectron spectroscopy (XPS) analysis has shown that deuterium irradiation induces interactions with Li-C and Li-O bonds. Ultraviolet photoelectron spectroscopy (UPS) shows Li$_2$O 2p orbital emission energy of 6.5 eV \cite{1}. UPS probes the outermost valence electron orbital (probe depth \~{}1nm), and yields information more sensitive to chemical bonding than XPS (probe depth \~{}10nm). This work examines D interaction with lithiated graphite. Additionally, high-resolution electron energy loss spectroscopy (HR-EELS) provides complementary information regarding H bond hybridization.

1Work supported by USDOE Contract DE-FG02-08ER54990, DE-AC02-09CH11466.

\begin{thebibliography}{1}
\end{thebibliography}