Abstract Submitted for the DPP10 Meeting of The American Physical Society

Design of the Thomson Scattering Diagnostic on the Pegasus Toroidal Experiment¹ D.J. SCHLOSSBERG, R.J. FONCK, B.A. KUJAK-FORD, B.T. LEWICKI, J.I. MORITZ, University of Wisconsin-Madison — A critical question concerning use of point-source helicity injection for non-inductive startup is whether, as I_p increases, energy confinement is dominated by cross-field transport or by parallel losses due to field line stochasticity. Furthermore, resistivelydriven helicity dissipation during plasma formation must be characterized. Both of these topics are important for predictive scaling to larger tokamaks. In addition, T_e and n_e profiles are needed for accurate magnetic equilibrium reconstructions at high β_T and I_N . To resolve these issues, a Thomson scattering diagnostic is being developed for the PEGASUS Toroidal experiment. The design is guided by systems on MST² and HSX.³ Scattered light from an incident Nd-YAG laser ($\lambda = 1064$ nm) will be detected by a polychromator system. Implementation on PEGASUS will measure n_e and T_e at ≥ 10 radial locations for plasmas with $n_e \geq 10^{19} \text{ m}^{-3}$ and T_e \sim 10 eV - 1 keV, with radial resolutions of \sim 1.75 cm and 5 cm for fine and coarse configurations, respectively.

¹Work supported by US DOE Grant DE-FG02-96ER54375. ²J.A. Reusch, et al. RSI **79**, 10E733 (2008) ³K. Zhai, et al. RSI **75**, 10 (2004)

> Michael Bongard University of Wisconsin-Madison

Date submitted: 16 Jul 2010

Electronic form version 1.4