Abstract Submitted for the DPP10 Meeting of The American Physical Society

A high current, low emittance Li⁺ alumino-silicate ion source and injector¹ PRABIR K. ROY, JOE W. KWAN, PETER A. SEIDL, WAYNE GREENWAY, LBNL, DAVE P. GROTE, LLNL, JERRY KEHL, MATTHAEUS LEITNER, LBNL, WILLIAM SHARP, LLNL, JEFF TAKAKUWA, JEAN-LUC VAY, WILLIAM WALDRON, JAMES K. WU, LBNL, HIFS-VNL COLLABORA-TION — We will present the design of a Li^+ ion source and injector for the Neutralized Drift Compression Experiment-II (NDCX-II) for warm dense matter experiments. The injector has been designed to use a large diameter (≈ 11 cm) Li⁺-doped alumino-silicate source with an injected ion kinetic energy of 100 keV, pulse duration of $0.5\mu s$, and beam current of 100mA. Using small prototype emitters, at a temperature of approximately 1275 °C, the space charge limited Li⁺ beam current density of $J \approx 1 \text{ mA/cm}^2$ was obtained for a 0.64 cm diameter emitting area. The lifetime of the ion source is ≥ 50 hours while pulsing the extraction voltage at 2 to 3 times per minute (a rate expected in NDCX-II). We are designing and fabricating a larger diameter source, in parallel with continuing R & D effort to increase the life time of the ion source.

¹This work was performed under the auspices of the U.S Department of Energy by LLNL under contract DE AC52 07NA27344, and by LBNL under contract . DE-AC02-05CH11231.

Prabir K. Roy Lawrence Berkeley National Laboratory (LBNL)

Date submitted: 20 Jul 2010

Electronic form version 1.4