Abstract Submitted for the DPP10 Meeting of The American Physical Society

Extrapolating the kinetic effects of energetic particles on resistive MHD stability to ITER¹ D.P. BRENNAN, R. TAKAHASHI, University of Tulsa, C.C. KIM, University of Washington — The effects energetic particles have on MHD instabilities is a key issue in the physics of burning plasma experiments such as ITER. Recent results indicate kinetic effects of energetic particles can play a crucial role in the stability of the m/n=2/1 tearing mode, especially in ITER where $\beta_{frac} = \beta_h/\beta$ is high (β_h is energetic particle β). Using realistic equilibria based on experimental reconstructions, the non-ideal MHD stability of the n=1 and 2 modes is calculated at a series of q_{min} , β , β_{frac} , and $S = \tau_R / \tau_A$, including the δf kinetic-MHD model in the 3-D extended MHD code NIMROD. Eigenvalue based computations using PEST-III and DCON give context to these results, and provide a basis for extrapolation. It is observed that for high q_{min} the particles have significant stabilizing effects, while at low $q_{min} \ge 1$ the interaction of the particles with the non-resonant response on axis causes destabilization of resistive modes. The requirements for directly computing energetic particle effects on resistive MHD modes in the burning plasma parameter regime are discussed.

¹Supported by US DOE Grant DE-SC0004125.

Dylan Brennan University of Tulsa

Date submitted: 20 Jul 2010

Electronic form version 1.4