Electron Temperature Gradient Turbulence: Validation in the Columbia Linear Machine Experiments

XIANGRONG FU, WENDELL HORTON, University of Texas at Austin, AMIYA SEN, Columbia University, New York, YONG XIAO, ZHIHONG LIN, University of California, Irvine — The electron temperature gradient (ETG) mode, which is a dominant mechanism for turbulent electron thermal transport in plasmas, is produced and verified by a recent experiment conducted in the Columbia linear machine[1]. They report modes at $\sim 0.3 - 0.5$ MHz, with azimuthal wave numbers $m \sim 14 - 16$ and parallel wave number $k_\parallel \sim 0.003$ cm$^{-1}$. We study these results using a gyro-fluid simulation code DTRANS and a gyro-kinetic simulation code GTC[2]. The results show that in the linear phase, the dispersion relation is consistent with kinetic theory for a slab ETG model and the radial structure of the fluctuation agrees with the experiment. We also investigate the saturation of ETG mode using the $E \times B$ turbulent mixing and coupling to low frequency modes. It turns out that low frequency drift-ion acoustic waves as in [1] interact with high frequency ETG modes to extract energy and saturate the ETG fluctuations.

Xiangrong Fu
University of Texas at Austin

Date submitted: 26 Aug 2010