Self-Regulation Dynamics of Drift Wave-Zonal Flow Turbulence in a Linear Magnetized Plasma

JINLIN XIE, RAN CHEN, CHANGXUAN YU, ADI LIU, TAO LAN, SOUBIAO ZHANG, GUANGHAI HU, WANDONG LIU

The Low-Frequency Zonal Flow is studied experimentally with the Langmuir probe arrays in a linear magnetized plasma device. In a weakly developed drift turbulence, the 3D mode characteristics of $m \simeq n \simeq 0, k_r \simeq 0.16 \text{cm}^{-1}$ and a very near-zero mode frequency are obtained through spectrum analysis, indicating the feature of zonal flow. The three-wave coupling between ZF and AT is shown through bispectrum analysis. Furthermore, the self-regulation dynamics are studied in such a drift wave-zonal flow (DW-ZF) turbulence through changing axial magnetic field, accompanying with the change of turbulence energy. Finally, the shearing effect of the DW by the ZF is also examined.

1Supported by the National Natural Science Foundation of China No.10875124,10605025, National Basic Research Program of China No.2008CB717800, Knowledge Innovation Program of the Chinese Academy of Sciences No. kjcx-yw-n28

Jinlin Xie
CAS Key Laboratory of Basic Plasma Physics, Dept of Modern Physics, University of Science and Technology of China, Hefei 230026, China