Advanced processing of spectrally-resolved core images from OMEGA direct-drive implosions

TAISUKE NAGAYAMA, ROBERTO MANCINI, RICARDO FLORIDO, TIRTHA JOSHI, University of Nevada, Reno, Department of Physics, RICCARDO TOMMASSINI, Lawrence Livermore National Laboratory, JACK DELETTREZ, SEAN REGAN, Laboratory for Laser Energetics, University of Rochester — We discuss the processing of spectrally-resolved core images from argon-doped, deuterium-filled OMEGA direct-drive implosions. Spectrally-resolved images were recorded by a DDMMI instrument which consists of a pinhole array, a multi-layer Bragg mirror, and an x-ray framing camera with micro-channel plates. The pinhole array creates a large number of object images each one of them characteristic of a slightly different wavelength range, which are then recorded by a gated framing camera. Thus, DDMMI yields data that are resolved in wavelength, space, and time. DDMMI data can be processed to extract broad- and narrow-band core images, as well as space-integrated and space-resolved spectra. These data are important for determining the spatial structure of the implosion core.

1DOE/NLUF grant DE-FG52-09NA29042
2Permanent address: Departamento de Física, Universidad de Las Palmas de Gran Canaria

Taisuke Nagayama
University of Nevada, Reno, Department of Physics

Date submitted: 16 Jul 2010

Electronic form version 1.4