Measurements of heat-flux profiles on the divertor targets of Alcator C-Mod

J.L. Terry, B. Labombard, MIT-PSFC, D. Brunner, MIT-PSFC, J.W. Hughes, M.L. Reinke, MIT-PSFC, G.A. Wurden, LANL — Acceptable power handling is one of the primary functions - and most challenging problems - for a tokamak divertor. A section of C-Mod’s outer divertor has been modified and instrumented in order to measure the incident heat-flux there. Surface temperatures are measured using IR thermography, and the heat-flux “footprints” are derived from those measurements. Peak surface-normal heat fluxes greater than 15 MW/m², corresponding to parallel heat-fluxes > 300 MW/m², are typical in both EDA H-modes and RF-heated L-modes. In EDA H-modes widths (FWHM) of the main peak of the heat-flux profiles are in the range 1.5-4 mm (magnetically mapped to the midplane), and these values help to constrain the major radius and magnetic field dependencies of multi-machine empirical scaling relations for SOL heat-flux widths. Also evident in the heat-flux profiles is a far-SOL “tail” with constant or slowly decreasing heat-flux. Scalings of the “footprint” profile widths with various “engineering” parameters, as well as with the SOL pressure profile widths of the main plasma, will be presented.

1Supported by USDoE awards DE-FC02-99ER54512 and DE-AC52-06NA25396.