Abstract Submitted for the DPP10 Meeting of The American Physical Society

Theoretical shapes of $L\alpha_1 X$ -Ray Satellites spectra of ${}_{40}Zr$, ${}_{42}Mo$, $_{44}$ Ru, $_{46}$ Pd and $_{48}$ Cd for lead as predicted by HFS calculations. SUREN-DRA POONIA, Research Scientist (Atomic and X-Ray Spectroscopy) — The X-ray satellite spectra arising due to $2p_{3/2}^{-1}3x^{-1}-3x^{-1}3d^{-1}$ (x \equiv s, p, d) transition array, in elements with Z = 40 to 48, have been calculated, using available HFS data on $1s^{-1}$ - $2p^{-1}3x^{-1}$ and $2p_{3/2}^{-1}-3x^{-1}, 3x^{\prime-1}$ Auger transition energies. The relative intensities of all the possible transitions have been estimated by considering cross - sections for the Auger transitions simultaneous to a hole creation and then distributing statistically the total cross sections for initial two hole states $2p_{3/2}^{-1}3x^{-1}$ amongst various allowed transitions from these initial states to $3x^{-1}3d^{-1}$ final states by CK and shake off processes. The calculated spectra have been compared with the measured satellite energies in $L\alpha_1$ spectra. Their intense peaks have been identified as the observed satellite lines. The peaks in the theoretical satellite spectra were identified as the experimentally reported satellites α_3 , α_4 and α_5 , which lie on the high-energy side of the $L\alpha_1$ dipole line. On the basis of agreement between the computed spectra and measured satellites, it is observed that the satellite α_3 is observed due to intense transition, ${}^{3}F_{4} - {}^{3}F_{4}$, in order of decreasing contribution of intensity. It has been found that the transition ${}^{1}F_{3} - {}^{1}G_{4}$ is the main source of the emission of the satellite α_4 in the elements $_{42}$ Mo to $_{48}$ Cd. The line α_5 , observed in the spectra of elements with Z = 40-48, has been assigned to the ${}^{3}D_{3} - {}^{3}F_{4}$, ${}^{3}D_{2} - {}^{3}F_{3}$, ${}^{1}P_{1} - {}^{1}D_{2}$ and ${}^{1}F_{3} - {}^{1}D_{2}$ transitions.

> Surendra Poonia Research Scientist (Atomic and X-Ray Spectroscopy)

Date submitted: 26 Jul 2010

Electronic form version 1.4