Alternate Operating Scenarios for NDCX-II

W.M. SHARP, A. FRIEDMAN, D.P. GROTE, R.H. COHEN, S.M. LUND, LLNL, J.-L. VAY, W.L. WALDRON, A. YEUN, LBNL — NDCX-II is an accelerator facility being built at LBNL to study ion-heated warm dense matter and aspects of ion-driven targets for inertial-fusion energy. The baseline design calls for using twelve induction cells to accelerate 40 nC of Li+ ions to 1.2 MeV. During commissioning, though, we plan to extend the source lifetime by extracting less total charge. For operational flexibility, the option of using a helium plasma source is also being investigated. Over time, we expect that NDCX-II will be upgraded to substantially higher energies, necessitating the use of heavier ions to keep a suitable deposition range in targets. Each of these options requires development of an alternate acceleration schedule and the associated transverse focusing. The schedules here are first worked out with a fast-running 1-D particle-in-cell code ASP, then 2-D and 3-D Warp simulations are used to verify the 1-D results and to design transverse focusing.

1Work performed under the auspices of US Department of Energy by LLNL under Contract DE-AC52-07NA27344 and by LBNL under Contract DE-AC03-76SF00098.