Abstract Submitted
for the DPP11 Meeting of
The American Physical Society

Narrow Energy-Spread Proton Beams Generated in a Gas Jet by High-Power CO\textsubscript{2} Laser Pulses1 D. HABERBERGER, S. TOCHITSKY, C. GONG, W. MORI, C. JOSHI, University of California Los Angeles, F. FIUZA, R. FONSECA, L. SILVA, Instituto Superior Tecnico — At the UCLA Neptune Laboratory, we have investigated laser driven ion acceleration using a high-power CO\textsubscript{2} laser pulse in a H\textsubscript{2} gas jet tuned around the critical plasma density of 10^{19} cm-3 for 10\textmu m light. The CO\textsubscript{2} laser pulses consist of a train of 3ps pulses separated by 18ps with a peak power of up to 4TW and total energy of 50J [1]. Protons have been accelerated from this interaction to energies up to 22MeV, which far exceeds that predicted by ponderomotive force scaling for our vacuum $a_0 \sim 2$. Furthermore, these high energy protons are contained within an energy spread of $\Delta E/E_{FWHM} \sim 1\%$, and have an estimated transverse emittance of down to \sim1mm-mrad. The evolution of the plasma density profile was probed with 532nm interferometry revealing a steep rise ($< 10\ \lambda$) to overcritical densities followed by long exponential fall on the back side of the plasma. 2D OSIRIS simulations run with the experimentally measured plasma density profile have uncovered a multistage process for the production of monoenergetic protons based on the shock acceleration mechanism which will be discussed.

1This work is supported by DOE Contract No. DE-FG03-92ER40727.

D. Haberberger
University of California Los Angeles

Date submitted: 12 Jul 2011