Bifurcation to 3D Helical Magnetic Equilibrium in an Axisymmetric Toroidal Device1 D.L. BROWER, W.F. BERGERSON, W.X. DING, L. LIN, UCLA, B.E. CHAPMAN, J.S. SARFF, University of Wisconsin-Madison, F. AURIEMMA, P. ZANCA, P. INNOCENTE, R. LORENZINI, E. MARTINES, M. Momo, D. TERRANOVA, Consorzio RFX — We report the first direct measurement of the internal magnetic field structure associated with a 3D helical equilibrium generated spontaneously in the core of an axisymmetric, magnetically-confined, toroidal plasma. Magnetohydrodynamic equilibrium bifurcation occurs in MST RFP plasmas when the innermost resonant magnetic perturbation grows to large amplitude, reaching up to 8\% of the mean field strength. Evolution of the magnetic topology is determined by measuring the Faraday effect, revealing that as the perturbation grows, toroidal symmetry is broken, and a helical equilibrium is established. Computational reconstruction of the magnetic field and electron density profiles based on a 3D topology agrees well with experimental data, providing a better fit than reconstructions based on a standard 2D cylindrical topology. These helical plasmas sometimes exhibit an improvement in electron particle confinement and increased temperature.

1Work is supported by US DOE and NSF.

David Brower
UCLA

Date submitted: 13 Jul 2011

Electronic form version 1.4