Performance of High Non-Inductive Current Fraction H-modes Generated by HHFW Heating in NSTX


High-harmonic fast wave (HHFW) heating in the National Spherical Torus Experiment (NSTX) has generated H-mode plasmas that have a significant non-inductive current fraction ($f_{NI}$). These experiments are part of a long-term strategy on NSTX to develop H-mode plasmas that are fully non-inductive ($f_{NI} \geq 1$) and that do not use the central solenoid. Initial experiments in 2010 achieved $f_{NI} \sim 0.65$ in a $I_p = 300kA$, $B_T(0) = 0.55T$ deuterium H-mode plasma with only 1.4 MW of HHFW power [1]. HHFW power could not be increased above 1.4 MW in 2010 due to poor antenna conditioning. Experiments are planned this year that will use 3-4 MW of HHFW power, with the goal of achieving $f_{NI} \geq 1$. This paper will present results for these recent high $f_{NI}$ experiments.


Work supported by USDOE Contract No. DE-AC02-09CH11466 and DE-AC05-00OR2272.

Gary Taylor
Princeton Plasma Physics Laboratory

Date submitted: 13 Jul 2011