Multiple Monochromatic Imaging (MMI) Status and Plans for LANL Campaigns on Omega and NIF1 F.J. WYSOCKI, S.C. HSU, I.L. TREGILLIS, M.J. SCHMITT, G.A. KYRALA, D.D. MARTINSON, T.J. MURPHY, LANL, R.C. MANCINI, T. NAGAYAMA, UNR — LANL’s DIME (Defect Implosion Experiment) campaigns on Omega and NIF are aimed at obtaining improved understanding of defect-induced mix via experiments and simulations of directly driven high-Z doped plastic capsules with DD or DT gas fill. To this end, the MMI diagnostic has been identified as a key diagnostic for providing space and time-resolved density, temperature, and mix profiles. The high Z shell dopants used on Omega are Ti and V, and to be used on NIF are Ge and Se. This poster will discuss the following four areas of MMI-related work at LANL, in collaboration with UNR: (1) data and preliminary analysis of MMI data from FY11 Omega campaigns, (2) development of a capability to generate simulated MMI data from radiation-hydrodynamic simulations of ICF implosions, (3) design of an MMI instrument for NIF that will cover the photon energy range 9.5-16.9 keV which includes the Ge/Se, H-like/He-like, α/β lines, and (4) the development of MMI data post-processing and spectroscopic analysis tools.

1Supported by DOE NNSA.

Scott Hsu
LANL

Date submitted: 26 Jul 2011