Abstract Submitted for the DPP11 Meeting of The American Physical Society

Quasi-Coherent Modes as Localized Viscous Ballooning Modes^{*} B. BASU, B. COPPI, T. ZHOU, MIT — The quasi-coherent mode associated with the enhanced- D_{α} H-Regime produced by the Alcator C-Mod machine has been observed [1] as being well localized in the deep E_r well at the edge of the plasma column and propagating in the ion diamagnetic direction in the plasma reference frame. This is explained as resulting from the excitation of a "viscous ballooning mode" with frequency close to ω_{di} , where $\omega_{di} \equiv -k_{\phi}c/eB_{\theta}ndp_i/dr$ is the ion diamagnetic frequency. The deep E_r well is shown to be responsible for the mode localization. For this we start our analysis from the model dispersion relation [2, 3], $\omega + i\gamma_{\mu}\omega - \omega_{di} = -\gamma_{RT}^2 + k_{stp}^2 v_A^2 1 + iD_m k_{\perp}^2 \omega - \omega_{*e}$, in a plane geometry, where γ_{μ} is proportional to the ion transverse viscosity, γ_{RT} is the Rayleigh-Taylor growth rate simulating the effects of the magnetic field line curvature, v_A is the Alfvén velocity, $D_m \equiv c^2 \eta/4\pi$, η is the plasma resistivity and $\omega_{*e} \equiv cT_e/eBr_0 d \ln n/dr$ is the electron drift wave frequency. *Sponsored in part by the U. S. DOE.

[1] I. Cziegler, Private communication (2010).

- [2] G. Ara, et al., Annals Phys. **112**, 443 (1978).
- [3] B. Coppi, et al., Annals Phys. **121**, 1 (1979).

Bruno Coppi MIT

Date submitted: 14 Jul 2011

Electronic form version 1.4