Abstract Submitted for the DPP11 Meeting of The American Physical Society

Circular polarization effects in ion acceleration from high intensity, short pulse laser interactions¹ F. DOLLAR, C. ZULICK, S.S. BULANOV², V. CHVYKOV, G. KALINTCHENKO, T. MATSUOKA³, C. MCGUFFEY⁴, A.G.R. THOMAS, L. WILLINGALE, V. YANOVSKY, A. MAKSIMCHUK, K. KRUSHELNICK, CUOS, Univ. of Michigan, G. PETROV, J. DAVIS, Division of Plasma Physics, Naval Research Laboratory — Experiments were performed to investigate ion acceleration effects from circular polarization from thin targets, using a high contrast, ultra-short laser pulse from the HERCULES laser facility at the Univ. of Michigan. Experiments were performed with 50 TW, 35 fs pulses at an intensity of $> 10^{21}$ Wcm⁻² on Si_3N_4 and Mylar targets of 30 nm to 1 μ m thickness with contrast $< 10^{-13}$. Protons with maximum energy 18 MeV and Carbon ions with energies of up to 10 MeV per nucleon were measured. Particle-in-cell simulations demonstrating the acceleration mechanism will be presented as well.

¹Supported by NSF Physics Frontier Center FOCUS (Grant PHY-0114336), Defense Threat Reduction Agency, and Naval Research Laboratory. We acknowledge the OSIRIS consortium for the use of OSIRIS. ²Currently at LBNL ³Currently at Japan Aerospace Exploration Agency ⁴Currently at UCSD

> Franklin Dollar Center for Ultrafast Optical Science, University of Michigan

Date submitted: 18 Jul 2011

Electronic form version 1.4