Abstract Submitted for the DPP11 Meeting of The American Physical Society

Damping of Plasma Modes in Ion Plasmas¹ M. AFFOLTER, F. AN-DEREGG, C.F. DRISCOLL, M. ANDERSON², T.M. O'NEIL, UCSD — We observe damping of Langmuir modes in Mg⁺ ion plasmas with different-mass ion impurities, and compare to nascent theory treating inter-species drag and bulk viscosity. The cylindrical ion plasmas have density $n \sim 10^7 \text{cm}^{-3}$, length $L_p \sim 10 \text{cm}$, and radius $R_p \sim 0.5$ cm in a field of B = 3Tesla, with plasma temperatures controlled over the range $10^{-5} < T < 1$ eV. For $T \ge 0.1$ eV, damping rates agree closely with Landau theory for the standing $m_{\theta} = 0$, $k_z = 1$ Langmuir mode at frequency $f \sim 20$ kHz. The damping from $10^{-2} \text{eV} < T < 0.1 \text{eV}$ is not yet understood. For $T \leq 10^{-2} \text{eV}$, damping rates $10 < \gamma < 10^3$ increase with (controlled) impurity fraction, and increase with decreasing temperature as expected for collisional drag, as $\gamma \propto T^{-3/2}$. For $T < 10^{-3}$ eV, a *decrease* in γ is observed; and theory must include effects of strong magnetization, ion-ion correlations, spatial isotope separation, and bulk viscosity. Additionally, the wave damping is generally dependent on *initial* amplitude at the lowest temperatures, where the wave-induced ion velocity exceeds the ion thermal velocity.

 $^1 \rm Supported$ by NSF PHY-0903877 and DOE DE-SC0002451. $^2 \rm Currently$ at Univ. of San Diego.

Francois Anderegg UCSD

Date submitted: 19 Jul 2011

Electronic form version 1.4