Abstract Submitted for the DPP11 Meeting of The American Physical Society

Scaling of Energy Confinement with Rotation for Advanced Inductive Plasmas in DIII-D¹ P.A. POLITZER, General Atomics — We report the scaling of the energy confinement time in moderately high beta $(2.2 \le \beta_N \le 3.3)$ advanced inductive plasmas in DIII-D, based on an analysis of a database of 630 discharges that have stationary conditions for ≥ 1 s ($\sim \tau_R$). In dedicated experiments it was found that τ_E decreases by $\sim 40\%$ from the highest to the lowest accessible rotation, prompting this study. Both power-law and offset-linear models are fit to the data, with the rotation represented by either M_A or M_S , the Mach number based on the Alfvén or the sound speed. A power-law $(\tau = C B^{a_B} n^{a_n} ... M^{a_M})$ is the most commonly used model, but there are strong physical arguments for a model that does not yield zero confinement for zero rotation, e.g., offset-linear $(\tau = C_a B^{a_B} n^{a_n} \dots + C_b B^{b_B} n^{b_n} \dots M)$. As there are values in the dataset that fall outside the general trend, the fitting is done by minimizing the mean absolute deviation, a method more robust than the common χ^2 minimization. There is no significant statistical difference between fits using M_A or M_S . Also no significant difference is found between the power-law and offset-linear models.

¹This work supported by US DOE under DE-FC02-04ER54698.

P.A. Politzer General Atomics

Date submitted: 20 Jul 2011 Electronic form version 1.4