Planar Foil MRT Instability Measurements Using a 1-MA LTD

J.C. ZIER, D.A. CHALENSKI, S.G. PATEL, D.M. FRENCH, R.M. GILGENBACH, M.R. GOMEZ, Y.Y. LAU, A.M. STEINER, I.M. RITTERSDORF, M.R. WEIS, University of Michigan, M.G. MAZARAKIS, M.R. LOPEZ, M.E. CUNEO, Sandia National Labs — Initial dynamic load experiments were performed on UM’s 1-MA linear transformer driver (LTD) facility, MAIZE, to characterize magneto-Rayleigh-Taylor (MRT) instability growth and plasma dynamics on planar-foil plasmas. The loads utilized a double current return plate geometry with a 400 nm-thick Al foil positioned between the return plates. Magnetic pressure accelerated the foil plasma to drive MRT instability that was measured using shadowography. Plasma dynamics were observed to be dominated by an initial expansion phase where both foil interfaces were found to be MRT unstable with 85-105 ns e-folding times.

1This research was supported by US DoE award number DE-SC0002590, US DoE through SNL award numbers 240985 and 768225 to UM, and from NSF award number PHY 0903340 to UM. JC Zier and SG Patel were supported by NPSC fellowships through SNL.

2Now at NRL
3Now at AFRL
4Now at SNL

Jacob Zier
University of Michigan

Date submitted: 21 Jul 2011