Abstract Submitted for the DPP11 Meeting of The American Physical Society

Development of Microwave Imaging Reflectometry for KSTAR¹ W. LEE, I. HONG, Y. NAM, M. KIM, J. LEEM, G.S. YUN, H.K. PARK, Postech, Y.G. KIM, K.W. KIM, Kyungpook National University, C.W. DOMIER, N.C. LUHMANN, JR., University of California at Davis — A microwave imaging reflectometry (MIR) system for KSTAR is being developed to measure 2-D (poloidal × radial) image of the electron density fluctuations for turbulence based transport study. Prior to the full system, two-frequency prototype system will be tested for the 2012 KSTAR campaign. The system is capable to measure poloidal wave numbers from 0.5 to 2 cm $^{-1}$ with a 16 channel array of detectors that can image \sim 13 cm length of the poloidal plane. Due to the standing wave problem of lens based system (sharing optics with 2nd ECEI system), a new system based on reflective optics is being designed. The RF electronics, capable of simultaneous measurement of the reflected beams from two cut-off layers, has been developed and the laboratory test results with a corrugated reflecting target will be presented.

¹Work supported by NRF Korea and US DOE.

Gunsu Yun Postech

Date submitted: 15 Jul 2011 Electronic form version 1.4