Abstract Submitted for the DPP11 Meeting of The American Physical Society

Capsule design for charged-particle stopping power measurements using simultaneous gamma-ray, particle, and x-ray observations of implosions¹ NELSON HOFFMAN, HANS HERRMANN, YONGHO KIM, LANL — We plan to measure the stopping power $\Delta E/\rho\Delta x$ of nonthermal charged particles in ICF plasmas, using an imploded capsule containing DT³He. We will measure (1) ablator areal density $\rho \Delta x$ via $^{12}C(n,n'\gamma)$ gamma-ray detection, using the Gamma Reaction History diagnostic, where the gamma rays are generated by 14.1-MeV DT neutrons; and (2) proton energy downshift ΔE via spectrometry of 14.7-MeV D³He protons, through collaboration with the MIT PSFC group. To measure $\Delta E/\rho\Delta x$ with a given accuracy imposes requirements on the accuracy of the separate measurements of ΔE and $\rho \Delta x$, and in turn on the yields of DT and D³He reactions and $\rho\Delta x$ of the capsule. Other requirements include optimizing the shell to have shallow gradients of temperature T_e and density n_e so that most of the particle slowing occurs at well defined conditions. Further major necessities are: the ability to diagnose T_e and n_e in the shell via x-ray spectra; and minimizing shell perturbation growth and anisotropy of particle emission.

¹This work supported by US DOE under contract DE-AC52-06NA25396.

Nelson Hoffman LANL

Date submitted: 15 Jul 2011 Electronic form version 1.4