Radial drift to diffusion ratio in asymmetry-induced transport

D.L. EGGLESTON, Occidental College — We are using a single-particle code with collisional effects to study asymmetry-induced radial transport in a non-neutral plasma. By following the time variation of the mean change and mean square change in radial position we can obtain the radial drift velocity \(v_D \) and the diffusion coefficient \(D \) as defined by the flux equation \(\Gamma = -D \nabla n + n v_D \). As previously noted, for asymmetries of the form \(\phi_1(r) \cos(kz) \cos(\omega t - l\theta) \) and low collisionality, there are two sources for the observed transport: resonant particle transport and transport produced by axially trapped particles. This latter type, which is often dominant, occurs near radii where \(\omega = l\omega_R \), where \(\omega_R \) is the azimuthal rotation frequency. For resonant particle transport, we find that \(v_D/D \) and \(D \) satisfy:

\[
\frac{v_D}{D} = \frac{r\omega c(l\omega_R - \omega)}{l^2 v_D^2},
\]

a generalization of the Einstein relation for \(\omega \neq 0 \). For the transport produced by axially trapped particles, however, \(v_D/D \) is significantly larger than this prediction. In contrast, our experiment\(^3\) indicates that \(v_D/D \) is significantly smaller than predicted. We suspect that these discrepancies indicate the need for a non-local determination of \(v_D \) and \(D \).

\(^1\)Supported by U.S. Department of Energy grant DE-FG02-06ER54882 and National Science Foundation grant PHY-1003952.

\(^3\)D.L. Eggleston, Phys. Plasmas 17, 042304 (2010).