Abstract Submitted for the DPP11 Meeting of The American Physical Society

Modeling the effects of large scale turbulence in the Madison Dynamo Experiment¹ ELLIOT KAPLAN, MIKE CLARK, KIAN RAHBARNIA, MARK NORNBERG, ZANE TAYLOR, ALEX RASMUS, CARY FOREST, UW-Madison, ERIK SPENCE, PPPL — Early experiments in the Madison Dynamo Experiment (MDE) demonstrated the existence of electric curresnt which correspond to the α and β effects of mean field MHD, i.e. currents driven parallel to B, and turbulent resistivity respectively. A magnetic dipole moment was measured parallel to the symmetry axis of the flow (α) and the induced toroidal field was less than half what would be expected from the mean flow (β). Traditionally, mean field theory requires a large separation in scale between the mean magnetic field and turbulent eddies in the conductive medium. However, the recent campaign on the MDE eliminated these effects when a baffle was added to eliminate the *largest* scale turbulent eddies. A model is presented that builds α - and β - like effects from these large scale eddies without any assumption of scale separation.

 1 CMSO

Elliot Kaplan UW-Madison

Date submitted: 15 Jul 2011

Electronic form version 1.4