Abstract Submitted for the DPP11 Meeting of The American Physical Society

Numerical calculation of the neoclassical electron distribution function in an axisymmetric torus¹ B.C. LYONS, S.C. JARDIN, PPPL, J.J. RAMOS, MIT PSFC — We solve for a stationary, axisymmetric electron distribution function (f_e) in a torus using a drift-kinetic equation (DKE) with complete Landau collision operator. All terms are kept to gyroradius and collisionality orders relevant to high- temperature tokamaks (i.e., the neoclassical banana regime for electrons). A solubility condition on the DKE determines the non-Maxwellian pieces of f_e (called f_{NMe}) to all relevant orders. We work in a 4D phase space $(\psi, \theta, v, \lambda)$, where ψ defines a flux surface, θ is the poloidal angle, v is the total velocity, and λ is the pitch angle parameter. We expand f_{NMe} in finite elements in both v and λ . The Rosenbluth potentials, Φ and Ψ , which define the collision operator, are expanded in Legendre series in $\cos \chi$, where χ is the pitch angle, Fourier series in $\cos \theta$, and finite elements in v. At each ψ , we solve a block tridiagonal system for f_{NMe} , Φ , and Ψ simultaneously, resulting in a neoclassical f_e for the entire torus. Our goal is to demonstrate that such a formulation can be accurately and efficiently solved numerically. Results will be compared to other codes (e.g., NCLASS, NEO) and could be used as a kinetic closure for an MHD code (e.g., M3D-C1).

¹Supported by the DOE SCGF and DOE Contract # DE-AC02-09CH11466. Based on analytic work by Ramos, PoP 17, 082502 (2010).

Brendan C. Lyons PPPL

Date submitted: 26 Jul 2011

Electronic form version 1.4