The Tendency of Plasma Liners Formed by Hypersonic Jets to Evolve Toward Good Spherical Symmetry During Implosion

JASON CAS-SIBRY, MILOS STANIC, RICHARD HATCHER, University of AL in Huntsville, SCOTT HSU, Los Alamos National Lab, DOUG WITHERSPOON, HyperV Technologies Corp., MARK GILMORE, University of New Mexico, WEIWEI LUO, University of AL in Huntsville — The Plasma Liner Experiment (PLX) is studying the implosion of a spherical liner formed via the merging of plasma jets. We are modeling the liner formation and evolution for 30 jets in 3D with SPH. The main results of this poster are (1) comparable peak pressure observed in 3d simulations of symmetric liner implosion and an equivalent case of the implosion of 30 discrete jets and (2) that gradients produced by the discrete jets smear such that the uniform and discrete jet simulations tend to converge on a common flow evolution at late times. Peak pressures occur at the center, and the rate of decrease of pressure is low until the liner has fully stagnated. Precursor jets occur at the jet merging interfaces, and the amplitude of these jets decreases during the implosion. The process is largely stable to Raleigh-Taylor instability growth for most of the implosion. Some mixing occurs which may cool the central hotspot. Further assessment is needed to evaluate whether the remaining asymmetry at the inner liner boundary is tolerable for compressing magnetized fuel to fusion conditions.

Research supported by the USDOE under Grant DE-SC0003560.

Jason Cassibry
University of AL in Huntsville

Date submitted: 25 Jul 2011

Electronic form version 1.4