Abstract Submitted for the DPP11 Meeting of The American Physical Society

Impact of different heating and current drive mixes on steadystate scenarios for ITER¹ M. MURAKAMI, J.M. PARK, ORNL, L.L. LAO, T.C. LUCE, R. PRATER, H.E. ST. JOHN, GA, P.T. BONOLI, MIT — Impact of a range of different sets of heating and current drive mixes on the ITER steady-state scenarios are examined exploiting an iterative steady state solution procedure using a new fast transport solver FASTRAN utilizing the ONETWO and EFIT codes. There is trade off between Q and f_NI,as in the LP scan (8 – 10 MA): optimization of 8MA scenarios lead to f_NI =100% and Q \leq 4.5, while optimization of 9-MA scenarios lead to f_NI =95% and Q \leq 5.3 using day-1 baseline H&CD capability, These values are close, but still somewhat short in simultaneously achieving the Q = 5 and f_NI = 100%. Upgrades of ECCD (with TORAY/CQL3D for parallel momentum conservation effects) considered include the Upper Steering Mirror (USM) and Equatorial Launcher Top Steering Mirror (EL-TSM) systems for current profile control and (2) doubling the total EC power to 40 MW. Effects of different density, density peaking, q_min and transport models will also be discussed.

¹Work supported by the US DOE under DE-AC05-00OR22725, DE-FC02-04ER54698, and DE-FC02-99ER54512

M. Murakami ORNL

Date submitted: 29 Jul 2011

Electronic form version 1.4