Abstract Submitted for the DPP12 Meeting of
The American Physical Society

Magnitude and Direction of Fine-Particle Gyrophase Drift
JEFFREY WALKER, MARK KOEPKE, West Virginia University, MICHAEL ZIMMERMAN, WILLIAM FARRELL, NASA-Goddard Space Flight Center, VLADIMIR DEMIDOV, AFRL, Wright-Patterson Air Force Base, and West Virginia University — Gyrophase-resonant excursions of magnetized-orbit dust grains in inhomogeneous plasma, causing periodic charge-state changes, may occur in the presence of strong magnetic field and inhomogeneous plasma potential. Gyrophase drift [Northrup and Hill, 1983], resulting from non-zero non-infinite charging rate of a dust grain, results in a perpendicular modification to the usual ExB drift. In plasmas with structured inhomogeneity, this ultimately causes dust grains to leave regions of inhomogeneity and cease both ExB-drifting and gyrophase drifting. In our approach, the motion of a dust grain is computed numerically by a leapfrog method for the Orbit Motion Limited (OML) charging model while the grain executes its gyro-orbit in plasma with either abrupt or gradual inhomogeneity. The causal link between charging-rate details and magnitude and direction of gyrophase drift is evaluated by applying an effective charge-rate parameter in the OML charging model. This parameter can be used to demonstrate the sensitivity of the gyrophase drift vector prediction on any model’s charging rate details.

1Work supported by DOE-OFES grant DE-SC0001939 and ORAU’s NASA-GSFC Postdoc Program.