Generation of high-energy (>15 MeV) neutrons using short pulse lasers

JACK DAVIS, GEORGE PETROV, TZVETELINA PETROVA, Naval Research Laboratory, DREW HIGGINSON, FARHAT BEG, University of California-San Diego — The production of high-energy (>15 MeV) neutrons has been demonstrated experimentally for the first time using the Titan laser as a driver of high-energy ion beams. Neutrons with energy of up to 18 MeV have been generated from $^7\text{Li}(d,n)^8\text{Be}$ reactions driven by laser pulses with peak intensity 2×10^{19} W/cm2, pulse duration of 9 ps and energy of 360 J. Three nuclear reactions, d(d,n)^3He, $^7\text{Li}(d,n)^8\text{Be}$, and $^7\text{Li}(p,n)^7\text{Be}$ have been explored as potential candidates for high-energy neutron production using a 3D Monte Carlo simulation model. For each reaction the required driver ion beam energy and number have been determined. We found that for the $^7\text{Li}(p,n)^7\text{Be}$ reaction 10^{10} protons with energy >20 MeV are required to generate high-energy neutrons, while for the $^7\text{Li}(d,n)^8\text{Be}$ reaction a comparable amount of deuterons with energy >5 MeV are needed.

Work supported for NRL by ONR and for the DoE labs performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344M.