Abstract Submitted for the DPP12 Meeting of The American Physical Society

Generation of high-energy (>15 MeV) neutrons using short pulse lasers¹ JACK DAVIS, GEORGE PETROV, TZVETELINA PETROVA, Naval Research Laboratory, DREW HIGGINSON, FARHAT BEG, University of California-San Diego — The production of high-energy (>15 MeV) neutrons has been demonstrated experimentally for the first time using the Titan laser as a driver of highenergy ion beams. Neutrons with energy of up to 18 MeV have been generated from ⁷Li(d,n)⁸Be reactions driven by laser pulses with peak intensity 2×10^{19} W/cm², pulse duration of 9 ps and energy of 360 J. Three nuclear reactions, d(d,n)³He, ⁷Li(d,n)⁸Be, and ⁷Li(p,n)⁷Be have been explored as potential candidates for highenergy neutron production using a 3D Monte Carlo simulation model. For each reaction the required driver ion beam energy and number have been determined. We found that for the ⁷Li(p,n)⁷Be reaction 10^{10} protons with energy >20 MeV are required to generate high-energy neutrons, while for the ⁷Li(d,n)⁸Be reaction a comparable amount of deuterons with energy >5 MeV are needed.

¹Work supported for NRL by ONR and for the DoE labs performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344M.

Jack Davis Naval Research Laboratory

Date submitted: 03 Jul 2012

Electronic form version 1.4