Abstract Submitted for the DPP12 Meeting of The American Physical Society

Three-Dimensional Mode Conversion Associated with Kinetic Alfvén Waves YU LIN, Physics Department, Auburn University, Auburn, AL 36849-5311, JAY JOHNSON, Princeton Plasma Physics Laboratory, Princeton, NJ 08543, XUEYI WANG, Physics Department, Auburn University, Auburn, AL 36849-5311 — We report the first three-dimensional (3-D) ion particle simulation of mode conversion from a fast mode compressional wave to kinetic Alfvén waves (KAWs) that occurs when a compressional mode propagates across a plasma boundary into a region of increasing Alfvén velocity. The magnetic field is oriented in the \hat{z} direction perpendicular to the gradients in the background density and magnetic field (\hat{x}) . Following a stage dominated by linear physics in which KAWs with large wave numbers $k_x \rho_i \sim 1$ (with ρ_i being the ion Larmor radius) are generated near the Alfvén resonance surface, the growth of KAW modes with $k_u \rho_i \sim 1$ is observed in the nonlinear stage when the amplitude of KAWs generated by linear mode conversion becomes large enough to drive a nonlinear parametric decay process, accompanied by a simultaneous excitation of zonal flow modes with similar large k_{y} . The simulation provides a comprehensive picture of mode conversion and the fundamental importance of the 3-D nonlinear physics to transfer energy to large perpendicular k_{y} modes, which can provide large transport across plasma boundaries in space and laboratory plasmas.

Yu Lin Physics Department, Auburn University, Auburn, AL 36849-5311

Date submitted: 09 Jul 2012

Electronic form version 1.4