Abstract Submitted for the DPP12 Meeting of The American Physical Society

Thomson-Scattering Measurements of Ion-Acoustic Wave Amplitudes Driven by the Two-Plasmon-Decay Instability R.K. FOLLETT, D.T. MICHEL, J.F. MYATT, S.X. HU, B. YAAKOBI, D.H. FROULA, Laboratory for Laser Energetics, U. of Rochester — Thomson scattering was used to measure enhanced ion-acoustic waves (IAW's) driven by the two-plasmon-decay (TPD) instability. The IAW amplitude scales with the $3/2\omega$ emission (a TPD signature). Up to 20 beams with 860- μ m-diam laser spots generated by 2-ns-long pulses of 3ω $(0.351-\mu m)$ light with overlapped intensities up to $4 \times 10^{14} \text{ W/cm}^2$ were used to produce ~ 300 - μm density-scale lengths. The IAW amplitudes were measured using 4ω Thomson scattering near 3ω quarter-critical densities. Time-resolved $3/2\omega$ spectroscopy was used to compare the amplitude of $3/2\omega$ emission to the IAW amplitude. $QZAK^{1,2}$ modeling shows a similar onset threshold and wave amplitude as the experiments. The model suggests that the source of the IAW growth is from the beating of electron-plasma waves, which drive density perturbations through the ponderomotive force. This conclusion is supported by the experimental geometry. This process is shown to be a saturation mechanism for TPD from simulations.³ This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

R.K. Follett Laboratory for Laser Energetics, U. of Rochester

Date submitted: 09 Jul 2012 Electronic form version 1.4

¹K. Y. Sanbonmatsu *et al.*, Phys. Rev. Lett. **82**, 932 (1999).

²K. Y. Sanbonmatsu *et al.*, Phys. Plasmas **7**, 2824 (2000).

³R. Yan *et al.*, Phys. Rev. Lett. **103**, 175002 (2009).