Using Plasma Metrics as a Diagnosis of Solar Wind Mode Composition

KRISTOPHER KLEIN, GREGORY HOWES, JASON TENBARGE, University of Iowa — We present a suite of plasma metrics, including electric and magnetic field polarizations, helicities, and compression ratios, which taken together can be used as a means of identifying the presence as well as type of linear wave modes in a turbulent plasma such as the solar wind. The importance of the wavevector size and angle as well as various plasma parameters such as β and T_\perp/T_\parallel are taken into account in determining the expected behavior of these metrics. These metrics are then examined in synthetic data prepared from spectra of linear kinetic eigen-modes and non-linear gyrokinetic simulations. A comparison between synthetic and in-situ data taken from the solar wind could help to elucidate the role of linear and non-linear physics in the turbulent transfer of energy from large to small scale fluctuations.