Modeling Two-Charge State Helium Plasmas1 GILBERT EM-
MERT, JOHN SANTARIUS, Fusion Technology Institute, Univ. of Wisconsin —
A computational model for the flow of energetic helium ions and atoms through a
background neutral helium gas is being developed. The essence of the method is to
consider atomic reactions as creating a new source of ions or neutrals if the energy
or charge state of the resulting particle is changed. A set of conservation equa-
tions in a two-dimensional (position – energy) phase space is formulated. Atomic
reactions that lead to ions being born with zero kinetic energy are modeled with a
1-D Volterra integral equation \cite{1} that can quickly be solved numerically by finite
differences. Atomic reactions leading to ions being born with finite kinetic energy
are formulated as source terms in the position-energy phase space. The conserva-
tion equations are solved iteratively using the solution to the Volterra equation as
a starting point. The current work focuses on multiple-pass, 1-D ion flow through
neutral gas in a nearly transparent anode and cathode pair in planar, cylindrical,
and spherical geometry for application to \(^3\)He-\(^3\)He and D-\(^3\)He inertial electrostatic
experiments.

1\cite{1} G.A. Emmert and J.F. Santarius, “Atomic and Molecular Effects on Spherically

1Research supported by US Dept of Energy, grant DE-FG02-04ER54745.