Continuum Kinetic Plasma Modeling Using a Conservative 4th-Order Method with AMR

GENIA VOGMAN, University of California - Berkeley, PHILLIP COLELLA, Lawrence Berkeley National Laboratory — When the number of particles in a Debye sphere is large, a plasma can be accurately represented by a distribution function, which can be treated as a continuous incompressible fluid in phase space. In the most general case the evolution of such a distribution function is described by the 6D Boltzmann-Maxwell partial differential equation system. To address the challenges associated with solving a 6D hyperbolic governing equation, a simpler 3D Vlasov-Poisson system is considered. A 4th-order accurate Vlasov-Poisson model has been developed in one spatial and two velocity dimensions. The governing equation is cast in conservation law form and is solved with a finite volume representation. Adaptive mesh refinement (AMR) is used to allow for efficient use of computational resources while maintaining desired levels of resolution. The model employs a flux limiter to remedy non-physical effects such as numerical dispersion. The model is tested on the two-stream, beam-plasma, and Dory-Guest-Harris instabilities. All results are compared with linear theory.

This research is supported in part by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF).

Genia Vogman
University of California - Berkeley

Date submitted: 11 Jul 2012
Electronic form version 1.4